Quantcast
Channel: Genomes Unzipped » genetic epidemiology
Viewing all articles
Browse latest Browse all 14

Estimating heritability using twins

$
0
0

Last week, a post went up on the Bioscience Resource Project blog entited The Great DNA Data Deficit. This is another in a long string of “Death of GWAS” posts that have appeared around the last year. The authors claim that because GWAS has failed to identify many “major disease genes”, i.e. high frequency variants with large effect on disease, it was therefore not worthwhile; this is all old stuff, that I have discussed elsewhere (see also my “Standard GWAS Disclaimer” below). In this case, the authors argue that the genetic contribution to complex disease has been massively overestimated, and in fact genetics does not play as large a part in disease as we believe.

The one particularly new thing about this article is that they actually look at the foundation for beliefs about missing heritability; the twin studies of identical and non-identical twins from which we get our estimates of the heritability of disease. I approve of this: I think all those who are interested in the genetics of disease should be fluent in the methodology of twin studies. However, in this case, the authors come to the rather odd conclusion that heritability measures are largely useless, based on a small statistical misunderstanding of how such studies are done.

I thought I would use this opportunity to explain, in relative detail, where we get our estimates of heritability from, why they are generally well-measured and robust, and real issues need to be considered when interpreting twin study results. This post is going to contain a little bit of maths, but don’t worry if it scares you a little, you only really need to get the gist.

Read the rest of this entry | Read comments


Viewing all articles
Browse latest Browse all 14

Trending Articles